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On the assumption that the relation between the overpotential and the current density is expressed 
by linear and Butler-Volmer equations, secondary current distributions were obtained in a two- 
dimensional model cell in which a working electrode with an open part serving to release gas bubbles 
to the back side of the electrode is located parallel to a counter electrode or a separator. Cell 
resistances or cell voltage in the model cell were evaluated for various combinations of geometrical 
parameters and heterogeneous kinetic parameters by means of the finite element method. As a result, 
when the kinetic equation was the linear approximation, the cell resistance or cell voltage varied 
mainly with two geometrical parameters (the interelectrode distance and the electrode surface ratio) 
and the kinetic parameters. On the other hand, when the kinetic equation was of the Butler-Volmer 
type the cell voltage varied with the kinetic parameters and the percentage of open area instead of the 
electrode surface ratio. In order to facilitate estimation of cell voltage for an industrial production- 
type cell composed of electrodes with voids or holes, the computed cell voltages were expressed as 
functions of these parameters in simple approximate equations. A criterion for estimating whether 
the cell voltage is controlled by the overpotential or the ohmic drop is presented. 

Nomenclature io 
n 

b 

V~q 

F 
I 
i 

linear overpotential coefficient, given by 
Equation 7 o 9 
coefficient defined by Equation 23 
coefficient defined by Equation 24 p 
linear overpotentiat coefficient given by 
Equation 7 R 
distance between the front side of the r 
working electrode and the separator (or 
the counter electrode when cell has no rrs 
separator) r 0 
thickness of the separator 
open circuit potential difference between r; 
working and counter electrodes 
Faraday constant r~ 
total current per half pitch 
current density at the working electrode r~ 

exchange current density 
number of electrons transferred in the 
electrode reaction 
percentage of open area, given by 
Equation 2 for the present model 
pitch, i.e. twice the length of the unit cell, 
defined by 2(BC) in Fig. 2 
gas constant 
unit-cell resistance, defined by Equation 
33 
residue of r from sum of r0 and r, 
ohmic resistance of the solution when 
Op = 0 
ohmic resistance in the model cell 
estimated from Equations 37 and 38 
resistance due to the overpotential when 
op = 0 
resistance due to the overpotential in the 
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T 
t 

Uk 

V 

V 
W 

X 

Y 

d~ 

O, 

model cell estimated from Equations 37 
and 38 
electrode surface ratio or superficial sur- 
face area, given by Equation 3 for the 
present model 
absolute temperature 
thickness of the working electrode, 
defined by EF in Fig. 2 
function defined by Equation 14 
weight function 
cell voltage 
width of the working electrode, defined 
by 2(DE) in Fig. 2 
abscissa located on the cell model 
ordinate located on the cell model 
anodic transfer coefficient 
linear overpotential kinetic parameter, 
defined by Equation 18 
infinitesimal length on the boundary 
dimensionless cell voltage, defined by 
Equation 20 
overpotential at the working electrode 
Butler-Volmer overpotential kinetic 
parameter at parallel plate electrode, 
defined by Equation 29 
Butler-Volmer overpotential kinetic 
parameter in the model cell, defined by 

Equation 45 
A Butler-Volmer overpotential kinetic 

parameter, defined by Equation 19 
v coordinate perpendicular to the bound- 

ary of the model cell 
logarithm of (I/io)/(p/2), defined by 
Equation 28 

~1 resistivity of the solution phase 
~2 resistivity of the separator 
q~ potential in the cell 
qS' normalized potential, given by Equation 

15 
~bo inner potential in the solution at the side 

of the counter electrode 
~b w inner potential in the solution at the side 

of the working electrode 
qS~, normalized inner potential in the 

solution at the side of the working elec- 
trode, defined by Equation 21 

7~ ratio of the overpotential to the ohmic 
drop 

F double integration space in the solution 
or the separator phase 

Subscripts 
k solution (k = 1) or separator (k -- 2) 
c counter electrode 
w working electrode 

1. Introduction 

In the design of industrial production-type cells, effort is made to minimize ohmic drop in the cell 
by considering several kinds of cell configuration. If electrodes have voids or holes through which 
solution and evolving gas bubbles pass in order to be removed from the interelectrode space, it is 
difficult to estimate ohmic drop by a simple algebraic calculation because current is distributed not 
only in the interelectrode space but also in the voids and at the back of the electrode. In a previous 
paper [1], current distribution at such an electrode with voids was obtained theoretically on the basis 
of a simple cell model with no overpotential. In real industrial cells, however, overpotential also has 
to be taken into consideration. 

The current distribution associated with the overpotential, i.e. the secondary current distribution, 
has been theoretically studied on simple cell configurations by Kasper [2-4], Wagner [5, 6], Ishizaka 
and Matsuda [7-10] and Tobias [11] for the case of linear overpotential-current density relation- 
ships. It is difficult to obtain analytical solutions for the secondary current distribution when the 
overpotential has a non-linear relation to the current density, e.g. via Tafel or Butler-Volmer 
equations. When overpotential was expressed by the Tafel equation, Ishizaka and Matsuda also 
derived analytical solutions of the secondary current distribution in simple forms of cell configur- 
ation by use of Fourier expansions [7-10]. For complex cell configurations, numerical computation 
is a poweful tool. Alkire et al. [12] applied the finite element method to predicting electrode shape 
change at a cathode during electrodeposition and obtained the secondary potential field distribution 
obeying the Butler-Volmer kinetic equation in a rectangular cell. Sautebin et al. [13] applied the 
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finite element method to the simulation of  the levelling of  a triangular surface during anodic 
dissolution in electrochemical machining. 

The goal of  this investigation is to evaluate the secondary current distribution in the model cell 
composed of an electrode with voids. The relation between the overpotential and the current density 
treated here obeys linear and Butler-Volmer equations. The former relation is selected on the basis 
that over a restricted potential region, the general overpotential-current density relation may be 
linearized. The latter involves the well-known Tafel equation as a limiting case for sufficiently large 
overpotential. The computational method employed is the finite element method. 

2. Computation 

We assume that 

(a) the solution and the separator have uniform resistivities over each phase; 
(b) the resistances of  the working and the counter electrodes are small enough to be negliglible 

in comparison with those of the solution and the separator, so that potential is distributed only in 
the solution and in the separator; 

(c) the electrolyte is of  uniform constitution; 
(d) the relations between the overpotential and the current density at the working electrode are 

expressed either by linear or Butler-Volmer equations; 
(e) there is no overpotentiai at the counter electrode; 
(f) concentration variation is neglected. 

On these assumptions, a scheme of  potential distribution in a one-dimensional cell with parallel 
plate electrodes is illustrated in Fig. 1 when a constant current is flowing in the cell with and without 
overpotential. Taking into account that the net voltage is V - Veq and that the ohmic drop is given 
by q5 w - ~bc, we can express the overpotential as 

= v -  K q - ( ~ - ~ )  (1) 

The model cell analysed here is depicted in Fig. 1 of  [1] or Fig. 2. The geometrical characteristics 
of  the cell are the interelectrode distance d l +  d2, the pitch p, the percentage of  open area o v and 
the electrode surface ratio s, the last two of  which are defined by 

I Cou~ler ] L~_~ble l~tyer i Working J 
elect ro4e ]  ~ ~ e c t  rode 
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r J  i l /  
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. . . .  [ . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . .  
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I 

Fig. 1. Scheme of potential distri- 
bution in a cell with parailel plate 
electrodes in galvanostafic elec- 
trolysis. The dashed lines represent 
potential distribution at open 
circuit. When current is passed 
through the ceil, the distribution is 
expressed by the solid line without 
overpotential and by the line 
( - - - ' ~  with overpotential. 
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Fig. 2. Potential distr ibutions in the cell with the following parameters:  d ~ / p  = 0.05, op = 50%, and s = 1.5 when the 
overpotential  is of  the But ler -Volmer  type with the parameters  ff = 3.89, e = 0.5 and A = 0. 195 for Fig. 2a and A = 19.5 
for Fig. 2b. Number s  denote values of  ~b'(=(q~ - dpc ) / (V  - V~q)). 

op = 100(p - w)/p (2) 

s = 2(w + O/p (3) 

The inner potential, q~, in the solution and a separator satisfies the two-dimensional Laplace 
equation given by 

ah~/ax  2 + ah~/ay  2 = 0 (4) 

The inner potentials on the sides of the working and the counter electrodes are taken to be qSw and 
~bc, respectively, i.e. 

~b = ~bw on the sides D E F G  (5) 

q~ = qSc on the side OI (6) 

4~ has a constant value on OI because of  assumption (e). On the contrary, q5 w varies with position 
on the side D E F G  and hence it is an unknown function to be solved in this calculation. The 
following two types of  overpotential are dealt with here: 

11 = a + bi (linear overpotential) (7) 

i/io = exp [(~nF/RT)tl] -- exp {[(a - l )nF/RT]t l}  (Butler-Volmer overpotential) (8) 

The current density at the working electrode is given by 

i = (O~b~/Ov)/Q~ on the sides D E F G  (9) 

Since there is no sink or source of current at the interface AH, between the separator and the 
solution, the current density in the solution is equal to that in the separator at the interface, i.e. 

(#c~/~x)/o~ = ( ~ 2 / 0 x ) / ~ 2  on the side AH (10) 

Potentials in both the phases at the interface are equal, and hence 

qS~ = q~2 on the s i d eA H  (11) 

On the sides of the insulated walls, the potential gradient is zero, i.e. 

Oc~/Ov = 0 on the sides OB, BC, CD and GI (12) 

We solve the boundary value problem expressed by Equations 4-12 using the conventional finite 
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element method [14], as has been done previously [1]. Multiplying Equation 4 by a weight function, 
v = v(x,  y), integrating the resulting equation over the solution or the separator phase by application 
of Green's theorem, inserting the boundary conditions given in Equations 9 and 12 into the resulting 
equation and eliminating 34)~/~?x and ~4)2/~x on the side AH by the use of Equation 10, we obtain 

e~ fDEFG ivd? + (~,/02) f,o (a4)2/Ov)vdz = u, + u2(e~/O2) (13) 

with 

= ffr~ [(~4)t/Ox)(Ov/Ox) + (O4)k/Oy)(cgv/Oy)]dxdy (14) U k 

We introduce the dimensionless potential, 4)', given by 

4)" = (4) - 4 ) ~ ) / ( V -  V~ n -  a) (15) 

Substituting Equation 15 into Equations 13 and 14 and replacing i by Equations 7 and 8 yields for 
linear overpotential 

[2/([1p)] fDEFG(1 -- 4);)vd? + (e,/02)f,o (O4)'2/Ov)vd7 = ul + u;(0,/Q2) (16) 

and for Butler-Volmer overpotential 

[2A/(~p)] fDEW {exp[eff(1 -- 4);)] -- exp[(c~ -- 1)~(1 -- 4);)]}vdr 

f~o (04)i/Ov)vd~ = u~ + ui(Q,/Q2) (17) + 

where 

[1 = b/[01 (p/2)] (for the linear relation) (18) 

A = [nFioOl(p/2)]/RT (for the Butler-Volmer equation) (19) 

= n F ( V  -- V~q)/RT (for the Butler-Volmer equation) (20) 

4); = (4)w - 4 ) ~ ) / ( V -  V~q - a) (21) 

It is 4); that is to be obtained in this calculation. Function u~ (k = 1, 2) in Equations 16 and 17 
corresponds to Uk in Equation 14 in which 4) is replaced by 4)2 The parameters for the Butler-Volmer 
equations are not only A but also c~. When r/is so small that the exponential in the Butler-Volrner 
equation can be approximated as a linear dependence [15], A ~ is equal to ft. 

Equations 16 and 17 were discretized into square elements with the same size and were inverted 
into an equivalent matrix formula involving the Dirichlet conditions 4)' = 0 on the side OI. The 
interpolation function employed was a linear function. Detailed procedures of the discretization and 
the matrix formulation have been described previously [1]. Since Equation 16 has the same form as 
in equation 11 of [1] it was solved by the method previously described [1]. A set of the simultaneous 
equations corresponding to Equation 17, however, contains a nonlinear component in the first 
terms. If  we apply the Newton method to Equation 17, we obtain 

with 

(2A/~p)  fDEFG {oa --  Bb --  [Ba/O~ - -  B b / ( O ~  - -  l)l[4)~k) --  4)~v(k-l)l/~}vdy 

+ (e~/e2) f,o (04);(k~/~v)vd~ = u~(k~ + (e , /o2)u;(~ (:22) 

Ba = exp [c~((1 - 4)~k-0)] (23) 

B b = exp[(c~ -- 1)~(1 -- 4)~k-~)] (:24) 
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where ~b~ff ) denotes a value of qS;, at the k-th iteration. Since Equation 22 is linear with respect to 
~b~ k), it is possible to obtain sucessively ~bff ) from known values of qS~ k- '~ by a conventional method 
providing that the initial potential distribution, qS~,! ~ is adequately selected. The assembled global 
matrices for Equation 22 are banded but they are asymmetric because of ~b~} k). Hence whole elements 
in the banded domain, the number of which is twice as many as the numbers of elements frequently 
employed for banded and symmetrical matrices, were loaded in computer memories. The initial 
distribution, q~0~, was taken uniformly to be unity. Starting at the initial value, successively iterated 
computation was made until convergence was achieved. The typical number of iterations was four. 
The maximum number of nodal points used was 2500. The total current, I, i.e. the sum of the current 
densities at all nodes of  the boundary, D E F G  is expressed by 

[ = fDEFG((~d)1/(~v)dT/o, (25) 

Integration of  Equation 25 was performed by Simpson's �89 rule. 

3. Relative contribution of overpotential and ohmic drop at parallel plate electrodes 

It is of great importance to know the relative contribution of the overpotential and the ohmic drop 
to the total cell voltage. Since current distributions in two- and three-dimensional cells vary with 
overpotential, it is difficult to specify the relative contribution. Conversely, the contribution can 
readily be evaluated in the one-dimensional cell because the current line is unique. Before consider- 
ing the complicated contribution in the two-dimensional cell, the contribution in the one-dimensional 
cell is treated here. The relative contribution can be expressed by the ratio, Z, of the overpotential 
to the ohmic drop. In the one-dimensional cell, )~ is given by 

Z = r,~/ro = q/[I(~la, + e2d2)/(p/2)] (26) 

Then, this quantity is equivalent to the Wagner number. In the cell with non-uniform current 
distribution, values of  Z are different from those of the Wagner number. For  linear overpotential, 
)~ can be expressed as a simple algebraic form. However, X for Butler-Volmer overpotential varies 
intricately with current. In order to facilitate understanding of the current-potential characteristics 
in the two-dimensional model cell, we discuss the dependence of  Z on the kinetic parameters at 
parallel plate electrodes. 

Eliminating q from Equations 8 and 26 yields 

e r = exp[(x)e r176 - exp [(Z)(1 -- 1/~)e r176 (27) 
where 

= ln[(I/io)/(p/2)] (28) 

0 --- ln[(~znFio(~tdt + 92d2)/RT] (29) 

At ~ = 0.5, Equation 27 can be solved with respect to 0 as follows: 

0 = -- ln(x) -- ~ + ln{ln[er + (e2~/4 + 1)'/2]} (30) 

When the overpotential is of the Tafel type, Equation 30 becomes 

0 = - ln(z) - ~ + In( i )  (31) 

When r/is so small that the Butler-Volmer equation can be linearized, Equation 30 becomes 

0 = - ln()0 - 0.731 (32) 

In Fig. 3, curves calculated from Equation 30 for )~ = 10 and 0.1 are shown in solid curves, 
indicating three domains in the 0 - ~ plane. In domain A, the ohmic drop predominates in the cell 
voltage, while in domain C the overpotential predominates. In intermediate domain B, the cell 
voltage is controlled by both the ohmic drop and the overpotential. Dotted curves in Fig. 3 were 
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B 

C 
Fig. 3. Diagram of the relation between the Butter-Volmer 
overpotential and the ohmic drop at parallel plate electrodes. 
The solid upper and lower curves correspond to Z = 0.1 
and 10, respectively. The dotted curves and dashed lines were 
calculated from Equations 31 and 32, respectively. 

calculated from Equation 31 for 7~ = 10 and 0.1. In the lower and right part of  domains B and[ C 
the Butler-Volmer equation can be regarded as the Tafel equation. Dashed lines in Fig. 3 were 
calculated from Equation 32 for Z = 10 and 0.1. In the domain ~ < 0, the Butler-Volmer equation 
can be approximated to the linear relation. When 0 > 1.6, the current distribution is primary, 
regardless of  values of  ~. When i or I/(p/2) is sufficiently larger than i0, the current distribution is 
still primary even for 0 < - 3.0. As values of  ~ decrease, however, the contribution of the over- 
potential gradually increases and finally the cell voltage is entirely controlled by the overpotential. 
This can be explained by the fact that variation of  the ohmic drop with I is linear while that of the 
overpotential is logarithmic. 

For  electrodes with complicated forms, values of ~/vary from point to point and, further, it is 
difficult to determine the characteristic length of  the cell. Therefore only the local Wagner number 
can be determined unequivocally. 

4. Results and discussion 

4.1. Potential and current distributions 

Calculated secondary potential distributions in the cell without the separator are shown in Fig. 2 
when the overpotential obeys the Butler-Volmer equation. Fig. 2A, which corresponds to the 
overpotential-controlled case, shows that potential drop in the solution phase plays a minor role in 
the overall cell voltage when the overpotential is large or the exchange current density is small. One 
of  the significant characteristics of  the potential distribution is that the potential of  the solution in 
contact with the working electrode varies from point to point. Consequently the potential is 
distributed as if equipotential lines might enter in the working electrode. In Fig. 2B, potential 
distribution is shown for the ohmic drop-controlled case. 

In order to examine the current distribution in detail we obtained the secondary current distri- 
butions at the working and the counter electrodes, as shown in Fig. 4. When the ratio of  t]~e 
overpotential to the ohmic drop is small (solid curve), corresponding to domain A in Fig. 3, the 
current concentrates on the FG-side and the confronted part of  the counter electrode. For  the case 
of the large ratio of  the overpotential to the ohmic drop (dashed curves), corresponding to domain 
C in Fig. 3, the current density ceases to concentrate at corners E and F and is distributed almost 
uniformly over the three sides of  the working electrode. The current density at the counter electrode 
facing the open part becomes larger than that at the counter electrode facing the FG-side because 
the partial current at the former part of the electrode is roughly equal to the sum of  the partial 
currents passing through the DE- and FG-sides, respectively. 
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D 

~ E  

\ 

0 \ 

Fig. 4. Current distributions at the working and the counter 
electrodes when the overpotential is of the Butler-Volmer 
type with ~ = 3.89 and e = 0.5. The solid lines are for a 
small overpotential A = 0.0389 while the dashed lines are 
for a large overpotential A = 3.89. The coordinates of the 
current densities are taken to be perpendicular to the 
electrode surfaces. 

4.2. Unit-cell resistance or cell voltage 

The cell resistance, r, may be defined by 

r = ( V -  Veq - a)/I (33) 

I f  a planar working electrode is located parallel to a planar counter electrode, corresponding to the 
case of  o 0 = 0, all the equipotential lines become straight and parallel and hence the cell resistance 
can be expressed by simple algebraic sum of  the ohmic resistance and the resistance due to the 
overpotential. This is not the case, however, in the two-dimensional model cell because the shape 
of current lines in the solution changes depending on the magnitude of  overpotential. Since the cell 
geometry is not simple, it is impossible in principle to specify separately the contributions of  the 
ohmic drop and the overpotential to the whole cell resistance. Nevertheless, the representation of 
the whole cell resistance in terms of  series connections of  different kinds of  resistance may be helpful 
for understanding variations of  the Wagner number,  as discussed in Section 3. In order to pursue 
this representation, we define two resistances, r0 and r,, where r0 is the ohmic resistance of the 
solution and the separator which would be observed if a planar working electrode of length p/2 
(AH-length) were located on F G  and on its extended line, i.e. at  Op = 0 and r~ is the resistance due 
to the overpotential in such a case. F rom these two resistances we can express the whole cell 
resistance, r, as 

r = r 0 + r, + r~ (34) 

where rr~ is a residual resistance and varies intricately with the overpotential and cell geometry. We 
shall describe the dependence of these three resistances on cell geometry and the coefficients of two 
types of  overpotential in the following discussion. 

4.2.1. Linear overpotentiaL ro and r, in this case are simple expressed by (o~dl + 02d2)l(pt2) and 
b/(p/2) ( =  ~ fl), respectively. I f  these r0 and G terms are inserted into Equation 34, rr~ is given by 

rrs = r - -  ~ l f l  - -  (Q1 d ,  -t- 02dz)/(p/2) (35) 

In Fig. 5, computed values of  rr~/O~ are plotted against fl for six values of  s. We examined in detail 
the dependence of rr~/Q 1 on the ratio O2/Q~, four geometrical parameters,  d~/p, d2/p, op and s, and the 
kinetic parameter  ft. As a result, we found that r~/O~ does not  vary appreciably with d~/p, d2/p or 
Q2/0~ when the following condition holds: 

dl/p > 0.3 (36) 

This fact indicates that most  of  the variations of  r with dl/p are reflected on r0. Since condition 36 
is frequently fulfilled in real production-type cells with separators, we discuss here the behaviour of 
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2 4 6 8 i0 
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Fig. 5. Variations of r~[Ql(p/2)] with fl for s = (a) 1.2, 
(b) 1.5, (c) 1.8, (d) 2.0, (e) 2.2 and (f) 2.5 when the over- 
potential is of the linear type. Geometrical parameters are 
% = 60%, d~/p = 0.5 and dz = 0. 

rrs under this condition. Variations of  rrs with op can be neglected for fl > 2 while those for fl < 0.8 
are slight. Therefore the main factors determining rrs are s and ft. 

When fl < 0.3, r~ can be regarded as that of  the pr imary current distribution which is expressed 
by equation 15" of  [1]. When values of  fi exceed 0.6, rrs starts to decrease gradually and then 
approaches a straight line as shown in Fig. 5. We found that the slope is equal to (l/s) - 1. I f  the 
overpotential or fl is so large that the current distribution at the working electrode is uniform, r 
varies linearly with the reciprocal o f  the electrode area. By taking into account the finding that r 
versus (p/2) /s  and r~ versusp/2 are both linear, it turns out that rrs varies linearly with (l/s) - 1 from 
the theoretical point of  view. On the basis of  this linearity, we conclude that the cell resistance is 
completely controlled by the overpotential when fl > 2. The intermediate region 0.3 < fl < 2 is the 
competitive domain in which both the ohmic drop and the overpotential control the cell voltage. 

It  may be convenient to have a simple equation that can express the variation of rrs with several 
parameters. We combined this linearity with equation 15 of  [1] valid for extremely small values of  
fl and derived the following approximate equation: 

r = (~d~ + o2d2)/(p/2)  + q l f l / s  + (0.59s - 0.62)(1 - 0.51e)~l + 0.333(op/100) zl x 0 . 5 1 ~  

(37) 

This equation holds for any value o f f l  within 4% of error when 1.5 < s < 2.5, op < 60% under 
condition 36. By the use of  this equation and known values of  several parameters it is possible to 
evaluate the cell resistance. In Equation 37 the cell resistance cannot be expressed as a simple sum 
of  the terms of  the overpotential and the ohmic drop (in contrast  with the case at parallel plate 
electrodes) because rrs largely contributes to the cell voltage. 

4.2.2. B u t l e r - V o l m e r  or Ta fe l  overpotent ial .  Since Butler-Volmer overpotential is not proport ional  
to the current density, the total cell resistance is neither inversely proport ional  to the current under 
potentiostatic conditions nor proport ional  to the celt voltage under galvanostatic conditions. For  
simplicity of  the analysis we restrict our attention to galvanostatic or total current controlled 

* There was a misprint in equation 15 in [1]. The term (02d2 + r dl) (p/2) should be replaced by (q2d2 + Q~ dl)/(p/2 ). 
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Fig. 6. Dependence of  ( c m F / R T ) ( V - V ~ q -  Iro) on 
In {I/[i o (p/2)]} computed for several values of 
A = ioQ ~ ( p / 2 ) n F / R T :  (a), 0.000389; (b), 0.00389; (c), 0.0389; 
(d), 0.389; (e), 3.89; (f), 38.9, when e = 0.5, Op = 50%, 
s = 2, d I/p = 0.5 and d 2 = 0. The straight line represents 
the Tafel equation when resistivity of  the solution is zero. 

electrolysis. We carried out the computation of the total current for various combinations of the 
kinetic and the geometrical parameters under the potentiostatic condition and then regarded 
I/[io(p/2)] as an independent variable. As a dependent variable, we took the apparent overpotential, 
( n F / R T ) ( V -  V e q -  Iro), which is defined as the cell voltage from which the ohmic drop, 
Ir 0 = I(Q~ d 1 + o2d2)/(p/2) at Op = 0, is subtracted. This apparent overpotential equals the product 
of I by r, + rrs in Equation 34. Then the cell voltage can be expressed by geometrical parameters, 
mainly op, s and dl/(p/2), and kinetic parameters, e and A. In Fig. 6, values of ( e n F / R T ) ( V  -- 
Veq - Iro) are plotted against In {I/[io(p/2)]} for several values of A at ~ = 0.5, op = 50%, s = 2 
and dl = p/2. The straight line in Fig. 6 is the Tafel line. 

For  very small values of In [I/io (p/2)], the overpotential can be regarded as linear overpotential and 
hence the apparent overpotential is almost zero, consistent with curves for fl < 0.5 in Fig. 5. Since 
the overpotential hardly contributes to the cell voltage at large values of A, e.g. A = 39, the 
apparent overpotential increases linearly with I, i.e. exponentially with In [I/io (p/2)]. For  small values 
of A the apparent overpotential varies along the Butler-Volmer or Tafel line and then increases 
exponentially. In other words, the cell voltage varies from overpotential-controlled voltage to ohmic 
drop-controlled when values of I/io(p/2 ) increase. This variation can be visualized if one traces a 
horizontal line at a value of 0 less than - 3 in Fig. 3. As values of A decrease, the exponentially rising 
part of  the curve only shifts to the right along the Tafel line. The amount  of  the shift in Fig. 6 is 
equal to ln[I/io(p/2)] for one decade of A. 

In order to facilitate estimation of the cell Voltage from values of the current flowing, the kinetic 
parameters and the geometrical cell parameters, we obtained an approximate equation for the cell 
voltage by examining dependence of the cell voltage on these parameters. The approximate equation 

thus obtained is 

Ir = V -  Veq = I(Qldl q- ~2d2)/(P/2) q- (RT/~nF)ln[I/ io(p/2)] 

+ 0.365 I~(op/100) z' - R T / 2 n F  (38) 

where the error involved in this equation is less than 0.6 for nF(V - Veq)/RT under the conditions 
0.3 < e <- 0.8, A < 0.4, ln[I/io(p/2)] > 2, 1.5 < s < 2.5, 30% < o v < 60% and d~/p > 0.1. The 
con~ t ion ln  [I/io(p/2)] > 2 corresponds to the Tafel region. Under the condition, In [I/io(p/2)] < O, 
the equation for the linear overpotential is valid. Then one can evaluate the cell resistance or the 
overpotential accurately from Equation 37 instead of  Equation 38. 
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4.3. Relative contribution o f  overpotential and ohmic drop in the model cell 

We now demonstrate a criterion to determine whether the cell voltage is controlled by the over- 
potential or the ohmic drop. The Wagner number is one of  the measures of  this criterion. However, 
since r/in the model cell varies from point to point, the Wagner number also varies from point to 
point, being equivocal. Therefore we use for the criterion the ratio, )~, of  the overpotential to the 
ohmic drop. 

4.3.1. Linear overpotential. For large values offl(fl > 2), r~s can be separated into the ohmic and the 
overpotential parts. From Equation 37, it follows that 

r; = (e,d, + Q2dz)/(p/2) + ( 0 . 5 9 s -  0.62)0, (39) 

r~ = b/[s(p/2)] (40) 

Then )~ is given by 

Z = b/[(Q,d, + Ozdz)s + (0.59s - 0.62)so,(p/2)] (,41) 

Z depends on the electrode surface ratio. 
Conversely, for small values of/~(/~ < 2), it is difficult to separate the cell resistance into r~ and 

r;. Therefore 2( cannot be determined unequivocally. 

4.3.2. Butler-Volmer or Tafel overpotential. The term RT/2nF in Equation 38 is much smaller than 
V - V~q under conventional electrolysis conditions. Then it is possible to roughly separate the terms 
in Equation 38 into the overpotential and the ohmic drop contributions, respectively: 

Ir'~ = (RT/~nF) In [I/io(p/2)l (42) 

Ir'o = I(Qld, + ozd2)[1 + 0.365(op/100)z']/(p/2) (43) 

From Equations 42 and 43, it follows that 

0' = - In(z) - ~ + ln(~) (4.4) 
where 

O" = ln {(anF/RT)io(o,d , + 02d2)[1 + 0.365(Op/100)Zl]} (45) 

Equation 44 has the same form as Equation 31. Thus the curves in Fig. 3 which have been derived 
for parallel plate electrodes hold also for the case of the two-dimensional model cell if 0 is replaced 
by 0'. 

4.4. Partial currents at three sides o f  the electrode 

In order to examine dependence of  the current distribution at the working electrode on various 
parameters, it is convenient to take into account the partition of  the partial current at DE-, EF- or 
FG-sides to the total current. 

4.4.1. Partial currents for linear overpotential. In Fig. 7, the percentage of  partial currents at the three 
sides are plotted against log (fi) for the case of linear overpotential at op = 50% and s = 1.5. When 
r-values increase, the partition at the FG-side decreases while that at the DE-side increases. This 
variation indicates that the current distribution becomes uniform as the overpotential increases. If 
the overpotential or fl is so large that the distribution is completely uniform, the partition of  the 
current should be equal to the ratio of  area of  each side to the total area, which is 33.3% 
for the case in Fig. 7. In this case, the three sides play the same role in electrolysis regardless of  values 
of  op and s, although the DE-side is located far from the counter electrode. 
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Fig. 7. Variations of partitions of currents at the DE-, EF- 
and FG-sides with log(t) at Op =- 50% for the case of linear 
overpotential when s = 1.5, d)/p = 0.5 and d 2 = 0. 

4.4.2. Partial currents for Butler-Volmer overpotential. In  Fig. 8, variations o f  parti t ions at the three 
sides with In [I/io(p/2)] are shown for five values o f  A. W h e n  values o f  in [I/io(p/2)] are sufficiently 
large, the part i t ions approach  67%, 29% and 4% respectively, for  the FG- ,  EF-  and DE-sides, 
corresponding to the pr imary  current  distribution. By taking into account  the fact that  the ohmic 
drop varies almost  linearly with I while the overpotential  follows the logari thmic variat ion w i t h / ,  
mos t  o f  the cell voltage for sufficiently large values o f  I/io(p/2 ) is ascribed to the ohmic  drop  
contr ibut ion and hence the current  distribution becomes primary.  

When  values o f  In [I/io(p/2)] decrease, the part i t ion at the FG-side decreases and that  at the 
DE-side increases and then they approach  constant  values depending on A-values. These constant  
values are those o f  linear overpotential  because the But ler -Volmer  equat ion reduces to the linearized 
equat ion th rough  the relation 1/A = fl when I/io(p/2) tends to zero. Limiting values o f  the part i t ion 
at a small value o f  I/io(p/2) can be found  in the curves in Fig. 7. When  a A-value is more  than 10, 
the current  distr ibution can be regarded as the pr imary  distribution, irrespective o f  current  values. 
As a A-value becomes less than 0.1, curves for the part i t ion shift to the right by an amoun t  
In [I/io(p/2)] for one decade o f  A. This shift corresponds  to tha t  o f  the cell voltage shown in Fig. 6. 
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Fig. 8. Variations of partitions of currents at the DE-, EF- 
and FG-sides with In [I/i o (p/2)] for the case of Butler-Volmer 
overpotential when values of A are: (-..-), 0.00389; 
( ), 0.0389; (---) ,  0.389; (..-), 3.89; (- . . . .  ), 38.9, 
calculated for s = 1.5, Op = 50%, dl/p = 0.5 and d2 = 0. 
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